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Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation
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Approximate analytical chirped solitary pulse (chirped dissipative soliton) solutions of the one-dimensional
complex cubic-quintic nonlinear Ginzburg-Landau equation are obtained. These solutions are stable and highly
accurate under condition of domination of a normal dispersion over a spectral dissipation. The parametric
space of the solitons is three-dimensional, that makes theirs to be easily traceable within a whole range of the
equation parameters. Scaling properties of the chirped dissipative solitons are highly interesting for applica-

tions in the field of high-energy ultrafast laser physics.
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I. INTRODUCTION

The complex nonlinear Ginzburg-Landau equation
(CGLE) has so wide a scope of applications that the concept
of “the world of the Ginzburg-Landau equation” [1] is not an
exaggeration. The CGLE demonstrates its effectiveness in
quantum optics, modeling of Bose-Einstein condensation,
condensate-matter physics, study of nonequilibrium phenom-
ena and nonlinear dynamics, quantum mechanics of self-
organizing dissipative systems, and quantum field theory. In
optics and laser physics, the CGLE provides an adequate
description of mode-locked oscillators and pulse propagation
in fibers [2,3].

The CGLE is multiparameter and not integrable in a gen-
eral form. As a result, an analysis of a multitude of its solu-
tions requires extensive numerical simulations. The exact
analytical solutions are known only for a few of cases, when
they represent the solitary waves (dissipative solitons) and
some algebraic relations on the parameters of equation are
imposed [2,4]. As a rule, one presumes some class of func-
tional expressions to construct the solution. As a result of
such presupposition, the solutions outside a given class are
missed. In principle, the missed solutions can be revealed on
basis of the algebraic nonperturbative techniques [4,5],
which, nevertheless, need a lot of computer algebra. These
challenges stimulate interest in the approximate methods of
integration of the CGLE.

The perturbative method has allowed obtaining the dissi-
pative soliton solutions of the reduced and complete cubic-
quintic CGLE in the limits of small or large dispersion and
self-phase modulation (SPM) [6,7]. Another approximate ap-
proach is to reduce an infinite-dimensional (in terms of de-
grees of freedom) problem to finite-dimensional one on basis
of, for instance, the method of moments. This allows tracing
an evolution of a finite set of the trial solution parameters
[8].

However, some physically interesting sectors of the
CGLE allow an approximation without any functional con-
straints imposed on the solution or/and the equation param-
eters. Moreover, dimensionality of the parametric space cor-
responding to such a solution can be reduced in comparison

*kalashnikov@tuwien.ac.at

1539-3755/2009/80(4)/046606(8)

046606-1

PACS number(s): 42.65.Tg, 42.65.Re

with the parametric space of the CGLE that makes the solu-
tion under consideration to be easily traceable.

A physically important sector, which permits an approxi-
mate analysis, is represented by the chirped solitary pulse
solutions, or the chirped dissipative solitons (CDSs) of the
CGLE. The CDS exists in both anomalous and normal dis-
persion ranges [8—10]. It is very important that the CDS is
energy scalable [8,10-12] and can be considered as a model
of femtosecond laser pulses with about of and over-
microjoule energies [13,14]. Energy scalability of the CDS
results from its stretching caused by a large chirp. Hence, the
CDS with large energy has a reduced peak power that pro-
vides its stability [15,16]. Simultaneously, a large chirp leads
to spectral extra-broadening so that the CDS becomes to be
compressible down to a few of tens of femtoseconds
[11,13,15].

The mechanism of the CDS formation is a composite bal-
ance of phase and dissipative effects [8]. The first effect is a
balance of phase contributions from the SPM and the time-
dependent phase affected by a normal dispersion [17]. That
is possible if a soliton is chirped, but this effect alone does
not provide a soliton stability. The CDS stability can be pro-
vided by a balance between the nonlinear gain and the spec-
tral dissipation [9,17,18].

A large chirp of the CDS allows two main approxima-
tions: (i) soliton stretching admits the adiabatic approxima-
tion, and (ii) fast phase variation allows applying the station-
ary phase method in Fourier domain [15,16,20]. As a result,
the CDS of the reduced cubic-quintic one-dimensional
CGLE (i.e., the CGLE with a Kerr’s-type SPM and a cubic-
quintic nonlinear gain; see the classification in [19]) [15,20]
and the generalized one-dimensional CGLE (i.e., the CGLE
with a Kerr’s-type SPM and a perfectly saturable loss) [16]
can be represented analytically as the two-parametric solitary
pulse solution without any restrictions on its functional form
as well as on the equation parameters (certainly, within the
scope of approximations under consideration, see below).

Here, the extension of this approximate technique to the
complete cubic-quintic one-dimensional CGLE (i.e., the
CGLE with both cubic-quintic SPM and cubic-quintic non-
linear gain) is presented. It is shown, that the CDS is the
three-parametric solution with five types of the truncated
spectral profiles: (i) finger-, (ii) parabolic-, and (iii) flat-top,
as well as (iv) concave and (v) concave-convex ones. The
regions of existence and stability of the CDS are analyzed
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systematically within a whole parametric range obeying the
condition of domination of a normal dispersion over a spec-
tral dissipation. The obtained results are validated on basis of
numerical solution of the CGLE and compared with the ex-
isting results of extensive numerical simulations of the
CGLE.

II. CDS OF THE CUBIC-QUINTIC CGLE

Let the CGLE be written down in the following form
[15,20]:

aiza(z,t) =—oca(z,n) + (a+ iﬁ)%a(z,t) +(k—1v)

Xl|a(z,0|?a(z,1t) = (k& +ix)|a(z,0|*a(z,1). (1)

Here, z is the propagation (longitudinal) coordinate, which
can be the propagation distance in a fiber, or the cavity
round-trip in a laser oscillator, for instance; ¢ is the “trans-
verse” coordinate, which can be, for instance, the local time
for a propagating laser pulse [2]. The complex slowly vary-
ing field amplitude a(z,?) is chosen so that |a|> has a dimen-
sion of instant power. The first term on right-hand side of Eq.
(1) describes an action of net-loss with the parameter o. In
the general case, this parameter is energy-dependent (i.e., it
depends on [ |a(z,t")|?dt’, see [15]) and has to be positive
to provide the vacuum stability [i.e., the subcritical range of
Eq. (1) is under consideration]. The second term describes a
spectral dissipation (« is the squared inverse bandwidth of
spectral filter) and a dispersion (8 is the dispersion coeffi-
cient). Positivity (negativity) of B corresponds to normal
(anomalous) dispersion. The third term results from a contri-
bution of cubic nonlinearity, which is a sum of contributions
from the nonlinear gain [or the self-amplitude modulation
(SAM) defined by the parameter x>0] and from the SPM
with the parameter y. Only the focusing SPM with y>0 will
be considered below. A higher-order (quintic) nonlinearity
defines the fourth term in Eq. (1). Its real part describes the
SAM saturation (>0 provides stability of a desired solution
against collapse), while a correction to the cubic SPM can be
both enhancing (x>0) and saturating (y<0).

To find the CDS solution, let’s make the traveling wave
reduction in Eq. (1) by means of the ansatz

A=
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a(z,t) = \"% explig(t) — igz], (2)

where P(7) is the instant power, which defines a CDS enve-
lope; ¢(z) is the phase, and ¢ is the phase shift due to a slip
of the carrier phase with respect to an envelope [3].

Below, we shall consider only the sector of CGLE, where
a normal dispersion prevails over a spectral dissipation, that
is B> a>0 [6]. This assumption is well-grounded for both
broadband solid-state [11,15,16] and fiber [16,21,22] laser
oscillators operating in the all-normal dispersion (ANDi) re-
gime. But the numerical analysis demonstrates [16], that
even the case of 8= a>0 (e.g., a thin-disk solid-state oscil-
lator [14]) can be described adequately in the framework of
the analytical approach under consideration.

The adiabatic approximation 7>\ allows obtaining
from Egs. (1) and (2)

BO?=q - yP - xP?*,

(id—P+@)=KP(l—§P)—O'—aQZ, (3)
P(t) dt  dt
where Q) =d¢(r)/dr is the instant frequency.

Since the first equation in Eq. (3) is quadratic in P, there
are two branches of solution. However, it is reasonable to
confine oneself to the branch, which has the limit y— 0 (this
limit has been considered in [15,20]). Then, one has

P=- a(y— VY2 +4gx - 4xBDY). (4)

Since P=0 by definition, there is the maximum fre-

quency deviation A from the carrier frequency: A’=g/p.

Thus, the second equation in Eq. (3) and Eq. (4) lead, after
some algebra [23], to

A —_
@_0+a92—’<(4—)(2’y)(2)(+§y—§A)(A_ .
dt ~ BlAxBO-(A-y)A] Ve
A=\Y +4Bx(A’-0?). Q)

The singularity points of Eq. (5) impose the restrictions
on the A value [23]

C 4 C 3b 2 ¢
203+ -+ {2+ -+ —— = \/(c-2)*-16al| 1 +—
¥ b b 2 2 b 32a

16§B<£+1> 1+

~12-3¢-9b-— |, 6
c f (6)

where three control parameters are a = o{/k, b= {7/ x, and c = a7/ Bk. These three parameters define the parametric dimen-
sionality of the CDS. Equations (4) and (6) allow obtaining the CDS peak power [() has to be equal to 0 in Eq. (4) for this

aim].

It is convenient to use the following normalizations: ¢' =t(k/{)\Vk/al, A"*=Aall k, Q'?>=Q%al/k, and P'={P. For the
dimensionless energy, one has E’'=FE(k/y)\k{/a. Hereinafter, these normalization will be implied and the primes will be

omitted.
The expressions for the dimensionless quantities are

046606-2



CHIRPED DISSIPATIVE SOLITONS OF THE COMPLEX ...

PHYSICAL REVIEW E 80, 046606 (2009)

4(A%-0?)
A=A/1+—=,
ch
b 4(A*-Q?)
P=—|\/1+——1],
2 ch

0

2
c{a+92+ %(1 —A)(% +1 —A”A(A -1)

dt

A?=

2

40
—+A(1-A)
ch

c 4\ c 3b ) c
2l =+3+- |l -+ —+2*x \/(c=2)"=16a| —+1
c b b/)\2 2 b

’

324

C C
16<—+1> —+1
b b

—3c-9h-—-12|. (7)

Since the phase ¢(7) of the CDS can be treated as a rapidly varying function of time in the limit of k<7, one may apply
the method of stationary phase to the Fourier image of a(z) [20]. As a result, the expression for the CDS spectral profile is

(A= D[(A=1)ch+4Q2w* - AY)]H(A? - &?)

plw) = le(w)] =

where e(w)= [dtVP(1) exp[id(r)—iwt], H(x) is the Heavi-
side’s function and one has to replace () by w in A given by
Eq. (7).

The CDS energy can be obtained from Eq. (8) by integra-
tion: E=[ fAZ—:p(w). This value can be related to the energy
E* of a solution of the linearized version of Eq. (1) through
the saturated net-loss parameter o: o= &(E/E*—1), where
8=do/dE|z_g+ [15]. Such a relation can be usable, for in-
stance, to define the CDS parameters from those of a laser
oscillator [15,16].

Thus, the approximate technique under consideration al-
lows representing the CDS parameters, its spectral and tem-
poral profiles as well as energy from a few of algebraic ex-
pressions (7) and (8), single first-order ordinary differential
Eq. (7) and numerical integration of Eq. (8). Since the CDS
is three-parametric, such an approximation allows easily
tracing the soliton characteristics within a broad range of the
CGLE parameters. It is important that the absolute values of
the CGLE parameters are not relevant in contrast to their
relations presented by the parameters a, b, and c. This allows
a unified viewpoint at the diverse systems obeying the CGLE
[16,24].

III. MASTER DIAGRAM AND REGIONS
OF THE CDS EXISTENCE

Equation (7) demonstrates that there exist two branches of
the CDS corresponding to two signs before square root in the
expression for A. As will be shown below, such a division
into two branches is physically meaningful. In accordance
with the sign in Eq. (7), we shall denote these branches as

cA{(A=D[cla+b+b*+ @) +b(A> = )] =2(b+ 1) (A% = &)}’

(8)

the “positive” (+) and “negative” (—) ones. One has note,
that only the — branch has a limit for {,y—0 (the
“Schrodinger limit”) [20].

A. Positive branch of the CDS

Regions of the + branch existence are shown in Fig. 1 on
the plane (a—c) for the different b. Zero value of a corre-
sponds to a marginally stable CDS. The existence regions are
maximally broad in this case. The restrictions on the param-
eters are 0<c¢ <2, and b>0 (the SPM is unsaturable) or b
<—c/3-4/3 (the SPM is saturable). One has to resemble,
that the decrease of |b| means a growth of contribution of the
quintic SPM. The physical meaning of maximum c is that
there is a minimum dispersion or a maximum spectral dissi-
pation, which provides the CDS existence.

A new view on the CDS results from a consideration of
chirp at the soliton center (i.e., at r=0)

(13-l
+ b - A|Q:0 .

dQ b?
9

'r//|t:0 ~ a on— a 4 (1 A|Q:0) X
Here, the chirp is normalized to «/{B. The analysis demon-
strates that the chirp becomes negative, when the ¢ parameter
reaches some minimum value (the lower borders of the
hatched regions in Fig. 1). Such a chirp corresponds to a
spike on constant background with lim,_ .., Q< *o,
lim,_, .., P=const>0. These solutions will be not considered
hereafter and the chirp positivity will be admitted as the ad-
ditional criterion of the CDS existence. This criterion agrees
with the analytical results of [10] in the limit of a/B<<1 and
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FIG. 1. Regions (hatched) of the + branch existence. b= {y/x
=20 (black solid curves, vertical hatching), 0.1 (light gray dotted
curves, horizontal hatching), and —-2.5 (gray dashed curves, hori-
zontal hatching).

k/y<<1. The appropriate zero asymptotic lim,_, .. P=0 of
the solutions analyzed in [10] exists only if 0<y=37y/(1
+c¢)k<pB/a. Here, is defined as the parameter in the phase
profile ansatz ¢(7)= InyP(z), which is used in [10].

As a result, there is some minimum c¢ (i.e., maximum
normal dispersion or minimum spectral dissipation) for the +
branch (Fig. 1). This minimum ¢ tends to zero, when the
positive b decreases (Fig. 1).

For <0, the CDS existence range squeezes, when b ap-
proaches =2 (Fig. 1). If b>-2, the positively chirped CDS
has a parabolic temporal profile and lim,_ ., Q= *0o,
lim,_,. . P=0 (7 is some finite interval of local time). We will
not consider such an “inverted” CDS hereafter.

The a growth, if it results from the o increase, enhances
the soliton stability against a vacuum destabilization. How-
ever, the existence regions shrink along the ¢ parametric co-
ordinate with such a growth (Fig. 1).

B. Negative branch of the CDS

Regions of the — branch existence are shown in Fig. 2 on
the plane (a—c) for the different b. The CDS exists within
the interval 0<c¢<2, which squeezes with a. Since this
branch has a Schrodinger limit, such a squeezing can be
obtained on the basis of the perturbative method [6]. Then,
the existence region for |b|>1 is ¢=2-4y6a/5 (open
circles in Fig. 2) [6]. One can see, that the approximation of
[6] is quite accurate, when a<<1 (i.e., in the low-energy
limit). The limiting a is defined by the hard excitation con-
dition a=1/4 [6]. The existence region shrinks with a grow-
ing positive quintic SPM (i.e., when b >0 tends to zero) and
stretches with a negative quintic SPM verging toward b=
-2.

There are no negative chirp solutions for this branch.
There exist the positive chirp solutions for ¢>2 and b<-2,
but they are the spikes on background.

One can see that the upper (in the ¢ direction) borders of
the regions coincide for the positive and negative branches.
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FIG. 2. Borders of regions of the — branch existence (black solid
curve for b= {y/ x=20, light gray solid curve for b=0.1, and gray
solid curve for b==-2.5, points for h=-2). Open circles correspond
to the region border from Ref. [6]. The existence regions lie below
the corresponding borders.

This means that the branches coexist within the regions of
their existence in the (a,b,c)-parametric space.

C. Master diagram

Representation of the existence regions in the form of
Figs. 1 and 2 is awkward in some way, because the a param-
eter can be energy-dependent. As a result, the branches do
not coexist as they differ in energy. It is more convenient to
use a representation on the plane (E—c) for the different b.
Such a representation will be called the master diagram. The
E value can be easily related to the experimentally control-
lable parameter E* (see Sec. II).

The master diagram for the CDS is shown in Fig. 3 for the
case of vanishing quintic SPM (b>1 [15,24]). The solid
curve shows the border of the CDS existence (a=0). Above

FIG. 3. The master diagram for b= {y/x> 1. There exists no
CDS within the hatched region. Solid curve corresponds to a
=0{/k=0. Dashed curve divides the regions, where the + and —
branches exist. Crosses (circles) correspond to the +(—) branch for
a=0.01. The points « and B correspond to the parameters of the
numerical solutions presented in Figs. 8 and 9 by open circles. The
open squares indicate the numerically obtained stability border (&
=0.04y,{=0.5y).
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} no CDS

FIG. 4. The master diagram for b= {y/ xy=0.2. There exists no
CDS within the hatched region. Black solid curve corresponds to
a=o{/k=0. Black dashed curve divides the regions, where the +
and — branches exist. Gray dashed (dotted) curve corresponds to the
+(=) branch for a=0.01. The point y corresponds to the parameters
of the numerical solution presented in Fig. 9 by open squares. The
open squares indicate the numerically obtained stability border (x
=0.04vy,{=0.5y). The points & and & correspond to the analytical
spectra presented in Fig. 12 [«=0.87y and 1.5v, respectively; B/«
=6.25, {=0.0027y, 0=0.1 (Ref. [12])]. The point &’ is the — branch
counterpart of &.

this border, the vacuum of Eq. (1) is unstable (hatched re-
gion). The dashed curve divides the existence regions for the
+ and — branches (the branches merge along this curve).
Crosses (circles) represent the curve along which there exists
the +(—) branch for some fixed value of a (so-called the
isogain curve).

The master diagram is interrelated with the existence re-
gions in Figs. 1 and 2. The point of intersection of isogain
with the dashed curve defines the maximum value of ¢ in
Figs. 1 and 2 for the corresponding a. Since the + branch
isogain has a nonzero asymptotic for E— o, there is the non-

N\
0.8 | AN €
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0.4 - - Sl
02| T
0 1 '
0.1 1 10 100

FIG. 5. The master diagram for b= {y/ x=-5. There exists no
CDS within the hatched region. Black solid curve corresponds to
a=o0{/k=0. Black dashed curve divides the regions, where the +
and — branches exist. Gray dashed (dotted) curve corresponds to the
+(=) branch for a=0.01. The point { corresponds to the parameters
of the numerical solution presented in Fig. 8 by open squares. The
open squares indicate the numerically obtained stability border (x
=0.04vy,{=0.5v).
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zero minimum ¢, which confines the + branch region for a
fixed a in Fig. 1. The — branch has a zero asymptotic for E
— oo, Hence, the — branch extends down to ¢=0.

The master diagram reveals four significant differences
between the branches. The first one is that the — branch has
lower energy than the + branch for a fixed ¢. The second
difference is that the + branch isogain has nonzero
asymptotic for £—ce. In this sense, the + branch is energy
scalable, that is its energy growth does not require a substan-
tial change of c. The — branch is not energy scalable, that is
its energy growth needs a substantial decrease of ¢ (e.g.,
owing to a dispersion growth) [16]. The third difference is
that the + branch verges on =0 within a whole range of E.
The fourth difference is that the — branch has a Schrodinger
limit , x—0.

Growth of the positive quintic SPM (i.e., b— 0) narrows
the existence region (Fig. 4). This means that smaller ¢ is
required to provide the CDS existence for some E. That is,
since the positive quintic SPM means an enhancement of the
SPM with power, a SPM enhancement has to be compen-
sated, for instance, by a dispersion increase (c1/8). One
can see from Fig. 4, that the + branch region narrows sub-
stantially with b— 0(b>0) within a whole range of E.

The situation is opposite, when the quintic SPM is nega-
tive. The existence range widens and a larger ¢ (i.e., smaller
dispersion) provides the CDS existence for some E. The +
branch region widens, as well. However, it is important to
remember, that the range of ¢, where the CDS with a fixed a
exists, is defined by the difference between i) the point of
intersection of the isogain with the boundary between the +
and — branches and ii) the isogain asymptotic for E— . As
a result, the range of ¢, where some isogain exists, can be
narrow in spite of the fact that a whole range of the + branch
widens (Figs. 1 and 5). The reversed situation, when a whole
existence range is narrow, but the range of ¢ for some isogain
is broad, is possible for b>0 (Figs. 1 and 4).

IV. CDS PROFILE, SPECTRUM, AND PARAMETERS

Figure 6 shows the frequency deviations and the CDS
profiles relating to the + branch [see Eq. (7)] for the different
b. One can see, that the decrease of positive b reduces a
soliton energy (black solid vs gray curves in Fig. 6) for the
fixed ¢ and a. That agrees with Figs. 3 and 4, where the
isogain shifts toward smaller energies for a fixed ¢, when the
positive b tends to zero. Since a power decreases, a chirp
(dQ/dr) decreases, too (black vs gray dashed curves in Fig.
6).

In the case of 5<<0, the dependence of () on ¢ becomes
“loitering” (light gray dashed curve in Fig. 6). As a conse-
quence, the CDS profile becomes flat-top (light gray solid
curve in Fig. 6). The energy increases for a fixed a in agree-
ment with a shift in the isogain toward larger energies in Fig.
5.

The frequency deviations and the CDS profiles for the —
branch are shown in Fig. 7. Out of the boundary between the
branches, the CDS relating to the — branch has lower energy
and power than its + counterpart. Correspondingly, a chirp is
lower, as well. Growth of the positive quintic SPM (i.e., b
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FIG. 6. The + branch CDS profiles (solid curves) and frequency
deviations (dashed curves) for the different b={y/yx. c=ay/ Bk
=1, a=0d{/k=0.01.

—0) increases the soliton energy, power and chirp (black vs
gray curves in Fig. 7).

Growth of the negative quintic SPM decreases the CDS
energy, power and chirp. However, such a decrease is com-
paratively small and, therefore, it is not shown in Fig. 7.

The CDS spectra are presented in Figs. 8 and 9. As has
been shown in Section II, the spectra are truncated at some
frequency *=A. There are the following types of spectral pro-
files: (i) flat-top (solid curve in Fig. 9), (ii) convex (solid
curve in Fig. 8 and dotted curve in Fig. 9), (iii) fingerlike
(dotted curve in Fig. 8), and (iv) concave (dashed curves in
Figs. 8 and 9). All these types are widely presented in laser
experiments and numerical simulations [11-13,15,16,21].

One can see, that, as a rule, the CDS spectra relating to
the + branch (Fig. 8) are broader than those relating to the —
branch (Fig. 9). The cause of this difference is a smaller
chirp for the — branch CDS. The spectrum narrows (widens)
with an approach of positive b to zero for the +(—) branch in
accordance with a decrease (increase) of the CDS chirp.
When the positive quintic SPM increases (b—0), concave
spectra appear. In contrast to the model of [22], the source of
such spectra is not the self-amplifying SAM [i.e., the nega-

0.3 0.05
0.2 0.04
0.1
0.03
G o ~
0.02
-0.1
02 0.01
0.3 0

FIG. 7. The — branch CDS profiles (solid curves) and frequency
deviations (dashed curves) for the different b={_y/x. c=ay/ Bk
=1, a=0{/k=0.01.
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FIG. 8. The + branch CDS spectra for the different b= {y/ x.
c=ay/Bk=1, a=0c{/k=0.01. Solid, dotted, and dashed curves
correspond to analytical spectra. Gray circles correspond to the nu-
merical spectrumit the point B in Fig. 3 ({=0.5y,B/a=25,k
=0.04y,E=820k\«{/¥?). Gray squares correspond to the numeri-
cal spectrum at the point ¢ in Fig. 5 ({=0.5vy,B8/a=25,«
=0.04y, E=2350k\kl/ V).

tive £ in Eq. (1)] but solely the positive quintic SPM [24]. As
a result, the concave spectrum solution of Sec. II is stable
against collapse.

It is important to note that, a verging of b toward zero for
the + branch as well as a transition to the — branch reduce
chirp. This can violate a validity of the method of stationary
phase (see Sec. II). As a result, the spectrum edges become
smooth (see Sec. V).

As was mentioned earlier, the + branch does not vanish
along the curve of o=0. This curve corresponds to marginal
stability against a vacuum excitation and the CDS has a
broadest spectrum here. The dependence of half-width of
such a spectrum on the ¢ parameter for the different b are
shown in Fig. 10. In the absence of the quintic SPM (b
> 1), the dependence is symmetric relatively ¢=1, where the
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FIG. 9. The — branch CDS spectra for the different b= {y/ x.
c=ayl/Bk=1, a=0c{/k=0.01. Solid, dotted, and dashed curves
correspond to the analytical spectra. Gray circles correspond to the
numerical spectra at the point « in Fig. 3 (two coinciding numerical
profiles are defined by {=0.1y; B/a=30 and 40; k=0.033y and
0.025y; E=280k\kl/y> and E=430k\«{/y?, respectively). Gray
squares correspond to the numerical spectrum at the point y in Fig.
4 (£=0.1y, B/ a=42,k=0.024y, E= 600K\ k! ¥*).
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FIG. 10. The CDS spectral half-widths for the + branch and the
different b=_y/ x; a=o{/ k=0.

spectral width is maximum. The maximum A lowers (rises)
and shifts toward ¢=0(c=2) for the positive (negative) b
—0 (Fig. 10). When b>-4.5, the + branch disappears for
a=0 and c=1.

Figure 11 demonstrates the dependencies of the spectral
half-width on a for a varied b and a fixed c¢. As a result of
larger energy and chirp, the + branch (solid curves) has a
larger spectral width, which decreases with a and the posi-
tive b verging toward zero. The region of the + branch exis-
tence shortens with b—0 (also, see Fig. 1). A negative b
expands the + branch region toward a larger a. However,
such a region is disconnected with a=0, if b>-4.5 for ¢
=1 (see the region for b=-2.5 in Fig. 1). The existence of
this minimum ¢ providing the CDS with a=0 is a result of
asymptotical behavior of the zero isogain in Fig. 5. Physi-
cally, absence of the limit ¢ — 0 can mean that such a CDS is
not able to develop from the vacuum of Eq. (1). Figure 11
demonstrates that the + branch disappears completely, when
b—-2.

The — branch has a lower spectral width, which increases
with a (Fig. 11, dashed curves). There exists some maximum
a (for a fixed c¢), where both branches merge.
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FIG. 11. The CDS spectral half-widths for the + (solid curves)
and — (dashed curves) branches in dependence on a= g/ k for the
different b= {y/ x and c=ay/Bk=1.
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V. NUMERICAL SIMULATION OF THE CDS

The above obtained approximate solution for the CDS has
to be verified numerically. With this purpose, a symmetrized
split-step Fourier method is used for numerical solving of
Eq. (1). The temporal greed contains 2'® points, and the non-
linear propagation is simulated in the time domain using a
fourth-order Runge-Kutta method. Total propagation dis-
tance consists of =10* steps. One step equals to one cavity
round-trip for an oscillator or one nonlinear length for a fiber.

The simulations demonstrate, that the necessary factor
providing the CDS stability is a dependence of o on E. Such
a dependence is chosen to be in the form presented in Sec. 11
(the & parameter equals to 0.5) [15]. Then, the E parameter in
a master diagram can be easily replaced by the E* one, but
the difference between E and E* is small and, therefore, in-
significant for further consideration.

The simulated spectra of the CDS are shown by open
circles and squares in Figs. 8 and 9 for the parameters a, b,
and c corresponding to the points «, B, v, and { in Figs. 3-5.
The agreement between the analytical and numerical results
is perfect. Moreover, the numerical results demonstrate that
the CDS is really three-parametric and its parameters scale in
accordance with the rules of Sec. II. This means that the
normalized parameters and profiles of the CDSs are identical
for the identical sets of (a,b,c). For instance, two-parametric
sets: (i) b=20, a=0.01, B/ =30, {=0.17y, E*=280k\«{/V,
x=0.033y (e.g., a 100 nJ Ti:sapphire oscillator with «
=25 fs> and y=4.55 MW" [15]); and (i) B/a=40, E*
=430x\kl/ ¥*, k=0.025 correspond to the single point « in
Fig. 3. This is the — branch, and the analytical (solid curve)
as well as numerical (gray open circles) profiles coincide in
Fig. 9. A single difference between the numerical and ana-
lytical spectra is that the former ones have gently smoothed
edges. One has noted, that a scalability of the CDS resembles
the property of a true soliton, which is a solution with no
fixed parameters [4].

The numerically obtained stability borders are shown in
Figs. 3-5 by open squares. The stability condition is o>0,
that provides a vacuum stability. One can see that both ana-
lytical and numerical borders coincide.

It is of interest to compare the analytical results with the
numerical ones presented in [10,12]. There is a difference
between the parametric sectors considered in [10,12] and in
this work. The case of B—0 lies beyond a validity of the
analytical model under consideration, which requires 8> a.
If B approaches « and then tends to zero (as well as if «
prevails over 7), the spectrum edges become smooth [12,16]
rather than truncated. The scaling rules of Sec. II and the
requirement of ¢ <2 can get broken in this case [25].

Nevertheless, (i) strong scalability of E with B, as well as
both (ii) existence of maximum g and (iii) minimum « pro-
viding a stable soliton suggest that the solutions analyzed in
[10,12] belong to the + branch (here we consider only nor-
mal dispersions). In conformity with [10], the stable CDS
exists within the region of normal dispersion (8> 0) for both
positive and negative y (Figs. 1 and 2). A fast disappearance
of the CDS with the increase of b<<0 [10] is the character-
istic feature of the + branch (Fig. 1).

As expected, the CDS of [12] belongs to the + branch (the
points & and ¢ in Fig. 4). The corresponding analytical spec-
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FIG. 12. The analytical CDS spectra for the + branch at the
points & (k=0.87; black solid curve) and & (k=1.57; gray dashed
curve) in Fig. 4. b=0.2, B/ a=6.25, {=0.002+, and ¢=0.1.

tra are shown in Fig. 12 [p(w) for the black solid curve is
rescaled for convenience]. Both analytical spectra match
with the numerical ones in Fig. 3 of [12] with the exception
of the smoothed edges for the latter owing to k= . Such a
smoothing enhances for the — branch (the point €' in Fig. 4)
because a chirp is lower for this branch.

When « < v, the spectrum is concave (black solid curve in
Fig. 12) like that in Fig. 8 for 5=0.2. When « exceeds 7, the
new type of a spectral shape appears: the concave-convex

PHYSICAL REVIEW E 80, 046606 (2009)

one (gray dashed curve in Fig. 12). Such spectra have been
studied numerically in [12] for x> y.

VI. CONCLUSION

In conclusion, approximate chirped solitary pulse solu-
tions of the cubic-quintic nonlinear CGLE have been con-
structed analytically under condition of domination of a dis-
persion over a spectral dissipation. The solutions are three-
parametric and easily traceable within a whole parametric
space, which has been represented in the form of the master
diagrams. The solutions are divided into two branches,
which differ in their energies and scaling properties. It is
found, that the chirped dissipative solitons under consider-
ation have truncated spectra with the concave, convex, and
concave-convex tops. Numerical analysis and comparisons
with the existing results have demonstrated, that the approxi-
mate analytical solutions are stable and highly accurate. The
obtained results are of interest, in particular, for a develop-
ment of both solid-state and fiber laser oscillators aimed to a
generation of femtosecond pulses with over-microjoule en-

ergy.
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